Guides
Web access
Implementation
You may use Tools in conjunction with our Web Search API to implement Live Real-Time Web Access to any of our models.
Heres a quick example in Python using Tools and the official shuttleai
python lib:
First, let’s start off by making our method which accesses ShuttleAI’s Web Search API.
import httpx
from urllib.parse import quote, unquote
def search_web(query: str, model: str = "search-ddg", limit: int = 5):
with httpx.get(
url=f"https://api.shuttleai.app/v1/web-search?q={quote(query)}&limit={limit}&model={model}&key=$SHUTTLEAI_API_KEY"
) as response:
return response.json()
Next, let’s assign a tool which will call our search_web
function.
tools = [
{
"type": "function",
"function": {
"name": "search_web",
"description": "Searches the web for a given query.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The query to search for."
},
"model": {
"type": "string",
"enum": ["search-ddg", "search-google"],
"description": "Defaults to `search-ddg`. The model to search with."
},
"limit": {
"type": "integer",
"description": "Defaults to `5`. The number of results to retrieve for the search."
}
},
"required": ["query"],
}
}
}
]
Lookin’ good! All that’s left is sending our tools to our chat_completion
request, retrieving the arguments, sending those arguments to our function, sending a second request with the results of our function for the model to answer our query.
This should look something like this by the end:
import json, httpx, asyncio
from urllib.parse import quote
from shuttleai import *
def search_web(query: str, model: str = "search-ddg", limit: int = 5):
with httpx.get(
url=f"https://api.shuttleai.app/v1/web-search?q={quote(query)}&limit={limit}&model={model}&key=$SHUTTLEAI_API_KEY"
) as response:
return response.json()
tools = [
{
"type": "function",
"function": {
"name": "search_web",
"description": "Searches the web for a given query.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The query to search for."
}
},
"required": ["query"],
}
}
}
]
async def main():
convo = [
{
"role": "system",
"content": "You are an AI with granted access to the internet using your built in `search_web(query: str)` function."
},
{
"role": "user",
"content": "When was the Five Nights at Freddys movie released? use your tool to search the web for the answer."
}
]
async with ShuttleAsyncClient("$SHUTTLEAI_API_KEY", 120) as shuttle:
first_response = await shuttle.chat_completion(
model="gemini-pro",
messages=convo,
tools=tools,
tool_choice="auto"
)
# print(first_response.choices[0].model_dump()) # { 'finish_reason': 'tool_calls', 'message': { 'tool_calls': [ { 'function': { 'arguments': '{"query": "Five Nights at Freddys movie release date"}', 'name': 'search_web' }, 'id': '...', 'type': 'function' } ] } }
if first_response.choices[0].finish_reason == 'tool_calls':
tool_calls = first_response.choices[0].message.tool_calls
if tool_calls[0].function.name == 'search_web':
query = json.loads(tool_calls[0].function.arguments)['query']
search_results = search_web(query)
# print(search_results) # [ { 'title': '...', 'link': '...', 'snippet': '...' }, { ... } ]
if search_results:
convo.append({"role": "system", "content": f"Search results for '{query}': ```{search_results}```"})
second_response = await shuttle.chat_completion(
model="gpt-3.5-turbo",
messages=convo
)
print(second_response.choices[0].model_dump()) # { 'finish_reason': 'stop', 'message': { 'content': 'The Five Nights at Freddy's movie was released on October 27, 2023. It was released for streaming on Peacock and theatrically in the United States.' } }
if __name__ == "__main__":
asyncio.run(main())